- Cornell, R. M. & Schwertmann, U. (1996). In *The Iron Oxides*. Weinheim, New York, Basel, Cambridge, Tokyo: VCH Publishers.
- De Grave, E., Vochten, R. & Vandenberghe. R. E. (1996). In Mineral Spectroscopy: A Tribute to Roger G. Burns, edited by M. D. Dyar, C. McCammon & M. W. Schaefer, pp. 105–116. Special Publication No. 5, The Geochemical Society.
- Flack, H. D. & Vincent, M. G. (1978). Acta Cryst. A34, 489-491.
- Fleet, M. E. (1986). J. Solid State Chem. 62, 75-82.
- Hill, R. J., Craig, J. R. & Gibbs, G. V. (1979). Phys. Chem. Mineral. 4, 317-339.
- Lucchesi, S., Russo, U. & Della Giusta, A. (1997). Eur. J. Mineral. 9, 31-42.
- O'Neill, H. St. C. (1992). Eur. J. Mineral. 4, 571-580.
- Petricek, V. & Dusek, M. (1998). JANA'98. A Crystallographic Computing System. Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
- Rez, D., Rez, P. & Grant, I. (1994). Acta Cryst. A50, 481-497.
- Samuelsen, E. J. (1975). J. Phys. 7, L115-117.
- Sheldrick, G. M. (1990). SHELXTL/PC. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Verwey, E. J., Haayman, P. W. & Romeijan, F. C. (1947). J. Chem. Phys. 15, 181-187.

Acta Cryst. (1999). C55, 1753-1755

Tl₂MoO₄ at 350 K

K. FRIESE,^a G. MADARIAGA^a AND T. BRECZEWSKI^b

^aDepartamento de Física de la Materia Condensada, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain, and ^bDepartamento Física Aplicada II, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain. E-mail: wmbfrxxk@lg.ehu.es

(Received 31 March 1999; accepted 25 June 1999)

Abstract

The structure of the title compound, dithallium molybdate, is isotypical with the glaserite structure and Tl_2WO_4 . The Mo ion is coordinated tetrahedrally by oxygen, with bond lengths ranging from 1.699(16) to 1.725 (16) Å, and angles between 107.6 (4) and 111.3 (4)°. The shortest O–O edge length is 2.83(2) Å. Three independent Tl ions are observed in the structure. The coordination polyhedron around Tl1 can be described as a distorted octahedron, with TI-O distances of 2.769 (10) Å. Tl2 has a coordination number of 12, with six O atoms at a distance of 2.941 (10) Å and the remaining six at a distance of 3.622(10) Å. The polyhedron around T13 is formed by ten O atoms, with distances ranging between 2.467 (16) and 3.682 (16) Å. The observed bond distances in Tl₂MoO₄ are in good agreement with those in Tl_2WO_4 .

Comment

Tl₂MoO₄ was first investigated by Gaultier & Pannetier (1972), who found three phase transitions, presumably all of first order, at temperatures of 776, 673 and 311 K. The lattice parameters given at room temperature are a = 7.919(5), b = 11.026(7) and c = 6.179(5)Å, in space group Pnam. Above 323 K, the structure is supposed to be trigonal in space group $P\bar{3}m$, with lattice parameters a = 6.257(3) and c = 8.085(4) Å. These authors further reported that the phase transition at 673 K leads to the destruction of the crystals. Later investigations (Sleight et al., 1975) reaffirmed that Tl₂MoO₄ at 298 K is orthorhombic, although the authors reported the non-centrosymmetric space group Pna21 with similar lattice parameters. They could only observe the phase transitions at 310 and 772 K and did not detect that at 673 K. They also presumed the intermediate phase to have space group $P\overline{3}m$ and proposed the space group $P6_3/mmc$ for the high-temperature phase.

Our investigations corroborate the space group $P\overline{3}m$ for the intermediate phase, which we measured at 350 K. The refinement of the structure shows it to be isostructural with glaserite, $K_3Na(SO_4)_2$ (Okada & Ossaka, 1980), and with Tl_2WO_4 (Okada *et al.*, 1979).

In Tl_2MoO_4 (Fig. 1), the Mo ions are coordinated tetrahedrally by the O atoms, with bond lengths ranging from 1.699 (16) to 1.725 (16) Å, and angles between 107.6 (4) and 111.3 (4)°.

Fig. 1. The *a*,*b* projection of the structure of Tl_2MoO_4 . Displacement ellipsoids are drawn at the 50% probability level.

As pointed out by Moore (1973), in the glaserite structure, and consequently in Tl_2MoO_4 , three different monoivalent cations can be observed. These are now discussed.

The coordination around Tl1 can be described as a distorted octahedron, with a TI-O distance of 2.769 (10) Å. This compares favourably with the distances observed in Tl_2WO_4 [2.70(7)Å].

Tl2 has a coordination number of 12. Six O atoms are at a distance of 2.941 (10) Å, while the remaining six are at a distance of 3.622(10) Å. For Tl₂WO₄, the corresponding distances are 2.95(7) and 3.630(4)Å. The coordination polyhedron can be described as a 12-coordinate trigonal antiprism, with six additional meridional anions in a hexagonal outline. The ideal point symmetry is $\overline{3}m$.

The polyhedron around Tl3 is formed by ten O atoms. It has ideal point symmetry of 3m. Again, six of them (O2) form a distorted meridional hexagon, while the three O atoms above share a tetrahedral base with, and the one O atom below forms the apex of, MoO₄ tetrahedra. The Tl3-Ol distance to this apical oxygen is the shortest, at 2.467(16) Å, followed by the six TI3—O2 distances of the hexagon [3.178 (16) Å]. The largest distances are formed with the basal O atoms [3.682 (16) Å]. These distances compare well with those observed in Tl₂WO₄: the shortest Tl3-O distance in this compound is 2.46(6) Å, followed by six distances of 3.18 (6) Å and three more of 3.64 (6) Å.

The shortest O-O distance is found in the Tl3 coordination polyhedron, with a value of 2.78(2) Å $(Tl_2WO_4 2.87 \text{ \AA})$, while the shortest O-O edge length in the tetrahedron is 2.83 (2) Å (Tl_2WO_4 2.92 Å).

Bond valence sums, which were calculated according to Brese and O'Keefe (1991), show a too high value for Tl1 in the two compounds (Tl₂MoO₄ 1.20; Tl₂WO₄ 1.44). For the other two Tl ions, the values are slightly too low in the molybdate (Tl2 0.87; Tl3 0.90) and nearly ideal in the tungstate (Tl2 0.96; Tl3 0.97).

Experimental

Crystals of the title compound were grown from an aqueous solution of Tl₂CO₃ and MoO₃, kept at 313 K for about one month. As the resulting crystals were very thin hexagonal plates, they were placed in a Pt crucible, heated to 923 K and afterwards cooled slowly to 873 K at a rate of 1 K d^{-1} . After rapid cooling to room temperature, the crystals were of a suitable size for single-crystal investigations.

Crystal data

Tl ₂ MoO ₄	Mo $K\alpha$ radiation
$M_r = 568.68$	$\lambda = 0.71073 \text{ Å}$
Trigonal	Cell parameters from 2313
$P\overline{3}m1$	reflections
a = 6.266(1) Å	$\theta = 2-26^{\circ}$
c = 8.103(2) Å	$\mu = 60.489 \text{ mm}^{-1}$
$V = 275.52(9) \text{ Å}^3$	T = 350(1) K
Z = 2	Irregular
$D_x = 6.855 \text{ Mg m}^{-3}$	$0.10 \times 0.10 \times 0.05 \text{ mm}$
D_m not measured	Yellow

Data collection

Stoe IPDS diffractometer	$R(F^2)_{\rm int} = 0.115$
Imaging plate scans	$\theta_{\rm max} = 26^{\circ}$
Absorption correction:	$h = -7 \rightarrow 7$
Gaussian (X-RED; Stoe,	$k = -7 \rightarrow 7$
1998)	$l = -9 \rightarrow 9$
$T_{\rm min} = 0.005, T_{\rm max} = 0.041$	50 standard reflections
2008 measured reflections	intensity decay: 1%
237 independent reflections	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 1.31 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.039$	$\Delta \rho_{\rm min} = -1.08 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.092$	Extinction correction:
S = 1.053	SHELXL93 (Sheldrick,
237 reflections	1993)
21 parameters	Extinction coefficient:
$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$	0.0031 (10)
where $P = (F_0^2 + 2F_c^2)/3$	Scattering factors from
$(\Delta/\sigma)_{\rm max} < 0.001$	International Tables for
	Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (A^2)

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

	x	У	Ζ	U_{eq}
T11	0	0	0	0.0444 (5)
T12	0	0	1/2	0.0620(6)
T13	2/3	1/3	0.17374 (10)	0.0568 (5)
Мо	2/3	1/3	0.6878 (2)	0.0346 (6)
01	2/3	1/3	0.478 (2)	0.094 (7)
O2	0.1852 (9)	-0.1852 (9)	0.2350 (15)	0.100 (4)

Table 2. Selected geometric parameters (Å, °)

TH $-O2(\times 6)$	2.769 (10)	$T13 - O2^{1} (\times 3)$	3.682 (16)
$T12-O2 (\times 6)$	2.941 (10)	Mo-O1	1.699 (16)
T12—O1 (× 6)	3.622 (10)	$Mo - O2^{ii} (\times 3)$	1.725 (16)
T13-01	2.467 (16)	O1O2 ¹¹	2.83 (2)
Tl3—O2 (× 6)	3.178 (16)	O2—O2 ^{III}	2.78 (2)
O2-T11-O2 ^{iv}	180.0 (4)	O2-T12-O1 ^{viii}	130.3 (4)
O2—TI1—O2`	77.9 (4)	O2—T12—O11x	112.1 (4)
02—T11—02 ^{vi}	102.1 (4)	O2—T12—O1 ⁱⁱ	49.7 (4)
O2—T12—O2 ^v	72.6 (4)	O1-Mo-O2 ⁱⁱ	111.3 (4)
O2—T12—O2 ^{vii}	107.4 (4)	O2 ⁱⁱ —Mo—O2 ^x	107.6 (4)
O2—TI2—O1	67.9 (4)		

Symmetry codes: (i) 1 - x, -y, -z; (ii) 1 - x, -y, 1 - z; (iii) 1 - zx + y, -x, z; (iv) -x, -y, -z; (v) -y, x - y, z; (vi) y, -x + y, -z; (vii) y, -x+y, 1-z; (viii) x-1, y, z; (ix) 1-x, 1-y, 1-z; (x) x-y, x, 1-z.

The computations were carried out with the coordinates of Tl_2WO_4 (Okada et al., 1979) as the starting model. Due to the high anisotropic displacement parameters of the O atoms, a refinement with split positions for these atoms was attempted. However, this did not lead to a significantly better model and so this refinement was discarded.

Data collection: EXPOSE (Stoe, 1997). Cell refinement: EX-POSE. Data reduction: X-RED (Stoe & Cie, 1998). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1996).

The authors, especially KF, gratefully acknowledge financial support from the European Union (TMR Project ERBFMBICT96-1527), the Gobierno Vasco (PI97/71) and the UPV (EB098/97).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1242). Services for accessing these data are described at the back of the journal.

References

- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Farrugia, L. J. (1996). ORTEP-3 for Windows. University of Glasgow, Scotland.
- Gaultier, M. & Pannetier, G. (1972). Rev. Chim. Miner. 9, 271-289.
- Moore, P. B. (1973). Am. Miner. 58, 32-42.
- Okada, K. & Ossaka, J. (1980). Acta Cryst. B36, 919-921.
- Okada, K., Ossaka, J. & Iwai, S. (1979). Acta Cryst. B35, 2189-2191.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sleight, A. W., Bierlein, J. D. & Bierstedt, P. E. (1975). J. Chem. Phys. 62, 2826–2827.
- Stoe (1997). EXPOSE. Stoe IPDS Software for Data Collection. Version 2.79. Stoe IPDS, Darmstadt, Germany.
- Stoe (1998). X-RED. Data Reduction Program. Stoe IPDS, Darmstadt, Germany.

Acta Cryst. (1999). C55, 1755-1757

Orthorhombic InFe_{0.33}Ti_{0.67}O_{3.33}

Yuichi Michiue,^{*a*} Francisco Brown,^{*b*} Noboru Kimizuka,^{*b*} Mamoru Watanabe,^{*a*} Masahiro Orita^{*c*} and Hiromichi Ohta^{*c*}

^aNational Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, ^bCentro de Investigaciones en Polimeros y Materiales, Universidad de Sonora, Rosales, Hermesillo, Sonora CP 83000, Mexico, and ^cR & D Center, Hoya Corporation, 3-3-1 Musashino, Akishima, Tokyo 196-8510, Japan. E-mail: michiue@nirim. go.jp

(Received 6 April 1999; accepted I July 1999)

Abstract

The title compound, indium iron titanium oxide, is closely related to $InFeO_3$, having a hexagonal structure which consists of alternating layers of InO_6 octahedra and FeO_5 trigonal bipyramids. According to substitution of Ti^{4+} for Fe^{3+} , excess O atoms are introduced into the Fe–O trigonal lattice plane of $InFeO_3$. The inplane arrangement of O atoms can be described as partial occupation on a honeycomb lattice, although large displacement parameters indicate local shifts of O atoms due to repulsive interactions between them.

Comment

Recently, new phases with monoclinic and orthorhombic structures have been found in the system $InFeO_3$ - $In_2Ti_2O_7$ (Brown, Flores *et al.*, 1999), and their isostructural compounds were also obtained in various solidsolution systems (Brown, Kimizuka *et al.*, 1999). Structural details of these phases are of interest but complicated due to commensurate or incommensurate satellite reflections (Brown, Flores *et al.*, 1999). This study is the first on the analysis of this family. The average structure of orthorhombic InFe_{0.33}Ti_{0.67}O_{3.33} has been determined using main reflections only, although the crystals showed incommensurate ($q \simeq 0.31a^*$) satellite reflections.

The structure is closely related to that of InFeO₃, in which two kinds of coordination polyhedral layers are stacked along the c axis; one is an InO₆ octahedral layer and the other is an FeO5 trigonobipyramidal layer (Giaquinta et al., 1994). The structure of orthorhombic InFe_{0.33}Ti_{0.67}O_{3.33} is given by deformation of the hexagonal InFeO₃ structure [a = 3.3270(2)]Å and c =12.1750(1) Å]. A considerable amount of Ti⁴⁺ is substituted for Fe³⁺ in InFe_{0.33}Ti_{0.67}O_{3.33}. The charge neutrality is maintained by the introduction of excess O atoms into the Fe-O2 trigonal plane. This phase being clearly distinct from InFeO₃, the O3 site, as well as the O2 site, is used to accommodate O atoms. Occupation ratios are greater than 0.5 at both sites and the amount of O atoms in the plane is 1.33 times that of InFeO₃. Thus, the arrangement of O atoms in this plane results in a partially occupied honeycomb lattice, as illustrated in Fig. l(a), while InFeO₃ gives a fully occupied triangle lattice of O2 sites, as shown in Fig. 1(b). An example of prob-

